ISSN 2227-9490
1.png
Издается при поддержке Научного совета РАН по изучению и охране культурного и природного наследия,
Проблемной комиссии РАН "Хронобиология и хрономедицина" и Российского философского общества

Powered by Scientific Council for Study and Protection of Cultural and Natural Heritage,
Problem Commission ‘ Chronobiology and Chronomedicine’, Russian Academy of Sciences, and Russian Philosophical Society

ЭЛЕКТРОННОЕ НАУЧНОЕ ИЗДАНИЕ
АЛЬМАНАХ ПРОСТРАНСТВО И ВРЕМЯ
[Elektronnoe nauchnoe izdanie Al'manakh Prostranstvo i Vremya]

Electronic Scientific Edition
Almanac Space and Time
[e-Almanac Space and Time]

Часть издательского проекта “Пространство и Время” 
The part of the "Space and Time" Рublishing Рroject
 
 АЛЬМАНАХ В СОЦИАЛЬНЫХ СЕТЯХ 

5a50100d3b3ed160c8beb3bb.png

УСПЕХИ МОЛОДЫХ ИССЛЕДОВАТЕЛЕЙ:
МОЛОДЁЖНЫЙ ПРОЕКТ ДЛЯ ТЕХ, КТО ДЕЛАЕТ ПЕРВЫЕ ШАГИ В НАУКЕ

ПРЕСС-РЕЛИЗ совместного проектаФилософского факультета МГУ имени М.В. Ломоносова,Московского общества испытателей природы при МГУ имени М.В. Ломоносова,Федерального государственного бюджетного научного учреждения«Институт стратегии развития образования Российской академии образования»и «Электронного научного издания Альманах Пространство и Время»в рамках подготовки и проведенияXIX Всемирного фестиваля молодежи и студентов в РоссииФедерального государственного бюджетного научного учреждения  «Институт стратегии развития образования Российской академии образования», Российского университета дружбы народов, Московского общества испытателей природы при МГУ имени М.В. Ломоносова и «Электронного научного издания Альманах Пространство и Время»  в рамках подготовки и проведения  XIX Всемирного фестиваля молодежи и студентов в России
пр_en1.png

Закрыть
Логин:
Пароль:
Забыли свой пароль?
  Войти      Регистрация



Войти в корпоративную почту как автор/член редколлегии/рецензент журнала

Логин:

@j-spacetime.com

Пароль:

(что это)


mnits3b.png

kZNxKCm5j00.jpg

Крымский философский клуб


Крымский травник

Каспийский Диалог 2016


ПЛАНЕТА ЗЕМЛЯ / EARTH PLANET / PLANET ERDE

Люшвин П.В.

К вопросу о весенней активизации сейсмической деятельности в горах

 

Люшвин Петр Владимирович, кандидат географических наук, консультант ООО «ЛИКО» (Москва)

E-mail: lushvin@mail.ru

 

Известно, что высоконапорные плотины — имплантированные в земную кору техногенные тектонические блоки — способны генерировать землетрясения при пригрузке их весом воды водохранилища. Аналогичным образом весеннее смещение масс тающего снега и воды в горах (на раздробленных блоках коры) совпадает по срокам с активизацией землетрясений, характерно это не только для слабых землетрясений.

 

Ключевые слова: активизация землетрясений, глубина очагов землетрясений, внутригодовой ход числа землетрясений, температура воздуха, влажность воздуха, таяние снега и льда.

 

Литература

Марчук А.Н., Дурчева В.Н., Савич А.И., Малышев Л.И., Радкевич Д.Б. Способ прогноза землетрясений. Патент РФ 2068185. 1996. [Электронный ресурс]. Режим доступа: http://ru-patent.info/20/65-69/2068185.html.

Сидорин А.Я. Синхронные сезонные изменения гидрорежима и активности слабых землетрясений в Гармском районе // Геофизические процессы и биосфера. 2011. Т. 10. № 3. С. 66—73.

Справочник по геофизике / Пер. с англ. М.: Наука, 1965. 571 с.

"ANSS Catalog Search." Northern California Earthquake Data Center. NCED Center, Berkeley Seismological Laboratory, n.d. Web. <http://www.ncedc.org/anss/catalog-search.html>.

Bettinelli P., Avouac J.P., Flouzat M., Bollinger L., Ramillien G., Rajaure S., Sapkota S. "Seasonal Variations of Seismicity and Geodetic Strain in the Himalaya Induced by Surface Hydrology." Earth and Planetary Science Letters 266.3 (2008): 332—344.

Clague J.J., Huggel C., Korup O., McGuire B. "Climate Change and Hazardous Processes in High Mountains." Revista de la Asociación Geológica Argentina 69.3 (2012): 328—338.

"FN: Northern Finland Seismological Network." FDSN Network Information. FDSN: International Federation of Digital Seismograph Networks, n.d. Web. <http://www.fdsn.org/networks/detail/FN/>.

Gibson G., Sandiford M. Seismicity and Induced Earthquakes. Melbourne: Australia: Melbourne Energy Institute, University of Melbourne, 2013. 33 p.

Gupta H.K., Rastogi B.K. Dams and Earthquakes. Amsterdam: Elsevier, 1976. 229 p.

Gupta H.K. "A Review of Recent Studies of Triggered Earthquakes by Artificial Water Reservoirs with Special Emphasis on Earthquakes in Koyna, India." Earth Science Reviews 58 (2002): 279—310.

Heki K. "Snow Load and Seasonal Variation of Earthquake Occurrence in Japan." Earth and Planetary Science Letters 207.1 (2003): 159—164.

Husen S., Bachmann C., Giardini D. "Locally Triggered Seismicity in the Central Swiss Alps Following the Large Rainfall Event of August 2005." Geophysical Journal International 171.3 (2007): 1126—1134.

Kukkonen I.T., Olesen O., Ask M.V., PFDP Working Group. "Postglacial Faults in Fennoscandia: Targets for Scientific Drilling." GFF 132.1 (2010): 71—81.

Muço B. "Statistical Investigation on Possible Seasonality of Seismic Activity And Rainfall-Induced Earthquakes in Balkan Area." Physics of the Earth and Planetary Interiors 114.3 (1999): 119—127.

Panza G.F., Peresan A., Zuccolo E. "Climatic Modulation of Seismicity in the Alpine–Himalayan Mountain Ranges." Terra Nova 23.1 (2011): 19—25.

Saar M.O., Manga M. "Seismicity Induced by Seasonal Groundwater Recharge at Mt. Hood, Oregon." Earth and Planetary Science Letters 214.3 (2003): 605—618.

Sidorin A.Ya. "Nonuniform Intra-Annual Distribution of Strong Earthquakes in the Garm Region." Izvestiya, Atmospheric and Oceanic Physics 49.7 (2013): 760—764.

Simpson D.W., Leith W.S., Scholz C.H. "Two Types of Reservoir-Induced Seismicity." Bulletin of the Seismological Society of America 78.6 (1988): 2025—2040.

Talwani P., Acree S. "Pore Pressure Diffusion and the Mechanism of Reservoir-Induced Seismicity." Pure and Applied Geophysics 122.6 (1984): 947—965.

"Weather, Climate & Earthquake Information." Japan Meteorological Agency, Tokyo. Japan Meteorological Agency, n.p. Web. <http://www.jma.go.jp/jma/indexe.html>.

 

 

Цитирование по ГОСТ Р 7.0.11—2011:

Люшвин, П. В. К вопросу о весенней активизации сейсмической деятельности в горах [Электронный ресурс] / П.В. Люшвин // Электронное научное издание Альманах Пространство и Время. — 2015. — Т. 8. — Вып. 2. — Стационарный сетевой адрес: 2227-9490e-aprovr_e-ast8-2.2015.91

 

 

 

 

 

Lushvin P.V.

On the Matter of Spring Activation of Seismic Activity in the Mountains

 

Petr V. Lushvin, Ph.D. (Geography), Consultant at LIKO Ltd. (Moscow)

E-mail: lushvin@mail.ru

 

Modern urban planning is actively carried out in mountainous areas, which in some cases are considered more seismic safety than intermountain plains. However, earthquakes occur in mountains, and seismic activation is of cyclical (seasonal) nature.

The subject of my research is a seasonal rise in seismic activity in mountains which I analyzed by comparing the number of earthquakes, their energy and depth of the epicenters with the temperature and air relative humidity. I carried out the selection of data according the authoritative catalogs in a way that foreshocks and aftershocks are not exerted a dominant influence. In my research I relied on a well-known fact that the high-pressure dams, which are man-made tectonic blocks implanted into the earth's crust, are capable of generating earthquakes when surcharging by the weight of water reservoirs. There are a number of works, authors of which show that, in a similar manner, the mass displacement of the spring thawing in mountains (on fragmented blocks of crust) coincides in time with earthquakes activation. This phenomenon is characteristic not only of weak earthquakes.

Test regions are mountainous areas of Scandinavia (northern Finland), south of the Kamchatka Peninsula and the south of Europe (Tyrol in Austria, Bulgaria and Romania).

In northern Finland, feature of activation of seismic activity is its spring confinedness; increase in the number of earthquakes occurs in warm, humid air (relative humidity 90%). In April, the average depth of the earthquake foci decreases from 13 to 7—8 km. However, these phenomena do not occur every year. The reasons for this is the amount of accumulated snow and the nature of thawing, evaporation predominance over the thawing or vice versa. In contrast, spring earthquakes activation is not typical for seaward of the Norwegian Sea, apparently due to lack of appropriate displacements of spring point loads on the lithospheric blocks.

For the south-east of the Kamchatka Peninsula in 1998—2013, earthquakes activation was typical in May, magnitudes reached a value of 5.5, earthquake foci depth was of 50—200 km. I show there were no any manifestations of certain trends in the values of magnitudes and depths of earthquake foci in spring.

For the mountains of Austria, Romania and Bulgaria spring earthquakes activation is also typical, when the average daily temperature of moist air is -3º+5º C. There were no either certain trends in the depths of earthquake foci in the spring, or the widespread earthquakes intensification in October and November.

For all of these regions, I show a graphical representation of intra-annual cycle of earthquakes.

I conclude seismic activity increases in mountains in spring during the phase transitions, i.e. under displacement of masses of thawing snow and water (similar to earthquakes at sharp changes of load water at high pressure dams). There are trends towards a decrease in focal depth during the spring mass thawing in northern Scandinavia, where shallow-focus earthquakes prevail.

 

Keywords: activation of earthquakes, focal depth of earthquakes, intra-annual cycle of earthquakes, air temperature, air humidity, thawing.

 

References:

 

"ANSS Catalog Search." Northern California Earthquake Data Center. NCED Center, Berkeley Seismological Laboratory, n.p. Web. <http://www.ncedc.org/anss/catalog-search.html>.

Bettinelli P., Avouac J.P., Flouzat M., Bollinger L., Ramillien G., Rajaure S., Sapkota S. "Seasonal Variations of Seismicity and Geodetic Strain in the Himalaya Induced by Surface Hydrology." Earth and Planetary Science Letters 266.3 (2008): 332—344.

Clague J.J., Huggel C., Korup O., McGuire B. "Climate Change and Hazardous Processes in High Mountains." Revista de la Asociación Geológica Argentina 69.3 (2012): 328—338.

"FN: Northern Finland Seismological Network." FDSN Network Information. FDSN: International Federation of Digital Seismograph Networks, n.d. Web. <http://www.fdsn.org/networks/detail/FN/>.

Gibson G., Sandiford M. Seismicity and Induced Earthquakes. Melbourne: Australia: Melbourne Energy Institute, University of Melbourne, 2013. 33 p.

Gupta H.K., Rastogi B.K. Dams and Earthquakes. Amsterdam: Elsevier, 1976. 229 p.

Gupta H.K. "A Review of Recent Studies of Triggered Earthquakes by Artificial Water Reservoirs with Special Emphasis on Earthquakes in Koyna, India." Earth Science Reviews 58 (2002): 279—310.

Handbook of Geophysics. Moscow: Nauka Publisher, 1965. 571 p. (In Russian).

Heki K. "Snow Load and Seasonal Variation of Earthquake Occurrence in Japan." Earth and Planetary Science Letters 207.1 (2003): 159—164.

Husen S., Bachmann C., Giardini D. "Locally Triggered Seismicity in the Central Swiss Alps Following the Large Rainfall Event of August 2005." Geophysical Journal International 171.3 (2007): 1126—1134.

Kukkonen I.T., Olesen O., Ask M.V., PFDP Working Group. "Postglacial Faults in Fennoscandia: Targets for Scientific Drilling." GFF 132.1 (2010): 71—81.

Marchuk A.N., Durcheva V.N., Savich A.I., Malyshev L.I., Radkevich D.B. Earthquakes Forecast Method. Patent of Russian Federation RF 2068185. Web. <http://ru-patent.info/20/65-69/2068185.html>. (In Russian).

Muço B. "Statistical Investigation on Possible Seasonality of Seismic Activity And Rainfall-Induced Earthquakes in Balkan Area." Physics of the Earth and Planetary Interiors 114.3 (1999): 119—127.

Panza G.F., Peresan A., Zuccolo E. "Climatic Modulation of Seismicity in the Alpine–Himalayan Mountain Ranges." Terra Nova 23.1 (2011): 19—25.

Saar M.O., Manga M. "Seismicity Induced by Seasonal Groundwater Recharge at Mt. Hood, Oregon." Earth and Planetary Science Letters 214.3 (2003): 605—618.

Sidorin A.Ya. "Nonuniform Intra-Annual Distribution of Strong Earthquakes in the Garm Region." Izvestiya, Atmospheric and Oceanic Physics 49.7 (2013): 760—764.

Sidorin A. Ya. "Synchronous Seasonal Changes in Hydrological Regime and Activity of Small Earthquakes in the Garm Region." Geophysical Processes and Biosphere 10.3 (2011): 66—73. (In Russian).

Simpson D.W., Leith W.S., Scholz C.H. "Two Types of Reservoir-Induced Seismicity." Bulletin of the Seismological Society of America 78.6 (1988): 2025—2040.

Talwani P., Acree S. "Pore Pressure Diffusion and the Mechanism of Reservoir-Induced Seismicity." Pure and Applied Geophysics 122.6 (1984): 947—965.

"Weather, Climate & Earthquake Information." Japan Meteorological Agency, Tokyo. Japan Meteorological Agency, n.p. Web. <http://www.jma.go.jp/jma/indexe.html>.

 

 

Cite MLA 7:

Lushvin, P. V. "On the Matter of Spring Activation of Seismic Activity in the Mountains."  Elektronnoe nauchnoe izdanie Al'manakh Prostranstvo i Vremya [Electronic Scientific Edition Almanac Space and Time]  8.2 (2015). Web. <2227-9490e-aprovr_e-ast8-2.2015.91>. (In Russian).

 

 Читать статью / Read more