ISSN 2227-9490
1.png
Издается при поддержке Научного совета РАН по изучению и охране культурного и природного наследия,
Проблемной комиссии РАН "Хронобиология и хрономедицина" и Российского философского общества

Powered by Scientific Council for Study and Protection of Cultural and Natural Heritage,
Problem Commission ‘ Chronobiology and Chronomedicine’, Russian Academy of Sciences, and Russian Philosophical Society

ЭЛЕКТРОННОЕ НАУЧНОЕ ИЗДАНИЕ
АЛЬМАНАХ ПРОСТРАНСТВО И ВРЕМЯ
[Elektronnoe nauchnoe izdanie Al'manakh Prostranstvo i Vremya]

Electronic Scientific Edition
Almanac Space and Time
[e-Almanac Space and Time]

Часть издательского проекта “Пространство и Время” 
The part of the "Space and Time" Рublishing Рroject
 
 АЛЬМАНАХ В СОЦИАЛЬНЫХ СЕТЯХ 

5a50100d3b3ed160c8beb3bb.png FB.png

УСПЕХИ МОЛОДЫХ ИССЛЕДОВАТЕЛЕЙ:
МОЛОДЁЖНЫЙ ПРОЕКТ ДЛЯ ТЕХ, КТО ДЕЛАЕТ ПЕРВЫЕ ШАГИ В НАУКЕ

ПРЕСС-РЕЛИЗ совместного проектаФилософского факультета МГУ имени М.В. Ломоносова,Московского общества испытателей природы при МГУ имени М.В. Ломоносова,Федерального государственного бюджетного научного учреждения«Институт стратегии развития образования Российской академии образования»и «Электронного научного издания Альманах Пространство и Время»в рамках подготовки и проведенияXIX Всемирного фестиваля молодежи и студентов в РоссииФедерального государственного бюджетного научного учреждения  «Институт стратегии развития образования Российской академии образования», Российского университета дружбы народов, Московского общества испытателей природы при МГУ имени М.В. Ломоносова и «Электронного научного издания Альманах Пространство и Время»  в рамках подготовки и проведения  XIX Всемирного фестиваля молодежи и студентов в России
пр_en1.png

Закрыть
Логин:
Пароль:
Забыли свой пароль?
Регистрация
  Войти      Регистрация



Войти в корпоративную почту как автор/член редколлегии/рецензент журнала

Логин:

@j-spacetime.com

Пароль:

(что это)


mnits3.png

kZNxKCm5j00.jpg

Крымский философский клуб


Крымский травник

Каспийский Диалог 2016


ЧЕЛОВЕК И СРЕДА ОБИТАНИЯ / MAN AND LIVING ENVIRONMENT / MENSCH UND LEBENSRAUM

»   2018. Том 16. Выпуск 3-4


DOI 10.24411/2227-9490-2018-12061

Мазурин И.М., Понуровская В.В., Колотухин С.П. 
         Экологический тупик от сжигания мусора и возможные пути его преодоления

Мазурин Игорь Михайлович, доктор технических наук, профессор, ведущий инженер кафедры теоретических основ теплотехники НИУ «МЭИ» 

ORCID ID https://orcid.org/0000-0002-5604-5510  
E-mail: igor-m-mazurin@j-spacetime.com; mazurinenin@mail.ru

Понуровская Вера Владимировна, инженер-эколог, аспирант кафедры теоретических основ теплотехники НИУ «МЭИ»

ORCID ID https://orcid.org/0000-0002-1531-0162 
E-mail: vera-v-ponurovskaya@j-spacetime.com; berenika973@mail.ru

Колотухин Сергей Прокопьевич, старший научный сотрудник, заведующий учебной лабораторией кафедры теоретических основ теплотехники НИУ «МЭИ» 

ORCID ID https://orcid.org/0000-0001-8257-4830 
E-mail: sergey-p-kolotukhin@j-spacetime.com; lrkftor@mail.ru

 В статье представлен анализ современного состояния задачи переработки бытовых отходов России. Рассмотрены причины серьёзных нарушений природоохранного законодательства, связанные с неконтролируемой работой полигонов. На основе данных системного анализа по шести основным способам переработки бытовых отходов, сделан вывод об отсутствии реальных перспектив процесса сжигания мусора из-за больших убытков от загрязнения земель сельхозугодий и серьёзной опасности для населения от диоксинов в выбросных газах мусоросжигающих заводов Хитачи-Цосен. В статье рассмотрены возможные альтернативы процессу сжигания бытовых отходов, которые были разработаны в России в конце прошлого века.

Ключевые слова: твёрдые бытовые отходы; мусоросжигающий завод; переработка; сжигание; окисление; загрязнение атмосферы; пыль; шлак; полигоны; диоксины; фураны; CO2.


Цитирование по ГОСТ Р 7.0.11—2011:
Мазурин, И. М., Понуровская, В. В., Колотухин, С. П. Экологический тупик от сжигания мусора и возможные пути его преодоления [Электронный ресурс] / И.М. Мазурин, В.В. Понуровская, С.П. Колотухин // Электронное научное издание Альманах Пространство и Время. — 2018. — Т. 16. — Вып. 3—4. DOI: 10.24411/2227-9490-2018-12061. Стационарный сетевой адрес: 2227-9490e-aprovr_e-ast16-3_4.2018.61.




DOI: 10.24411/2227-9490-2018-12061

Mazurin I.M., Ponurovskaya V.V., Kolotukhin S.P. Environmental Deadlock from Waste Incineration and Possible Ways to Overcome It

Igor M. Mazurin, Doctor of Engineering, Professor, Chief Engineer at the Chair of Theoretical Foundations of Heat Engineering, National Research University Moscow Power Engineering Institute

ORCID ID https://orcid.org/0000-0002-5604-5510 
         E-mail: igor-m-mazurin@j-spacetime.com; mazurinenin@mail.ru

Vera V. Ponurovskaya, M.E.M., Environmental Engineer, postgraduate student at the Chair of Theoretical Foundations of Heat Engineering, National Research University Moscow Power Engineering Institute

ORCID ID https://orcid.org/0000-0002-1531-0162  
 E-mail: vera-v-ponurovskaya@j-spacetime.com; berenika973@mail.ru

Sergey P. Kolotukhin, M.Eng., Senior Researcher, head of university laboratory at the Chair of Theoretical Foundations of Heat Engineering, National Research University Moscow Power Engineering Institute 

ORCID ID https://orcid.org/0000-0001-8257-4830   
 E-mail: sergey-p-kolotukhin@j-spacetime.com; lrkftor@mail.ru

The problem of of MSW (municipial solid wast) managenet/utilization/disposal/recycling remains and, we suppose, will remain for a long time the most acute and charged matter for human society both in Russia and around the world. At present, the influence of closely interrelated technical, socio-economic and political reasons is dominant in its resolution. These are primarily the problems of processing new polymers and household chemicals, new types of waste associated with the mainstreaming of electronics and electrical engineering in the everyday life, new knowledge on toxins generated during the MSW incineration (MSWI), as well as new types of taxes and new stage of struggle for world and regional markets, new channels and market outlets. In Russia, this mood turned spikiest due to the prospect of acquiring the MSWI plant and technology developed by Hitachi-Zosen Inova AG.

The subject matter of our study is such a sore question of MSW management, as the rationale for decision in optimal way to disposing them in the light of current ideas about the landgilling and incineration toxicity and gate fees for these processess, as well as on the long-term social and environmental risks of such a choice. Since this is partly a review article, and partly a summation and synthesis (generalization) of our multi-year engineering and environmental field research, we use the methods of source and comparative analysis, as well as the historical-genetic and problem-critical approaches as the main methodological tools.

The starting point of our critical analysis was the assertion that (a) the ‘waste-for-energy’ idea is nothing more than an advertising campaign (since at present the efficiency of converting thermal energy into electrical one in up-to-date incinerators is enough only to promote advertising) and (b) ‘dioxins-free’ (pollution-free) MSW incineration/pylolisis technologies (i.e., high-temperature processes) exist only on paper and are used as a tool for improving not market environment, but market conditions, conomic and political pressing and control.

Considering that in Russia, ones planned to burn the entire volume of annual MSW production, i.e. 90 million tons per year, they need 128 MSWI plants with a capacity of 700 thousand tons of waste per year. During continuous operation of 128 incineration plants to dilute the concentration of dioxins to the standard, 5.37×1010 m/hour of clean air will be required. For the year, i.e. for 8760 hours, it will take 47×1013 m3/a, which by weight will give 5.8×1011 tons of air.

Today in the world, about 250 million tons of household waste are burned annually with a concentration of dioxins at the inlet of the pipe of 0.1 ng/m3. For this reason, it is possible to estimate the air consumption for the dilution of dioxins as 1.5×1012 tons. Taking into account the generation of total waste on Earth for the year as 9 billion tons, i.e. 36 times more, we could argued that with the widespread use of waste incineration technology, the problem of lack of fresh air to dilute the waste gas from waste incineration at MSWI plants will inevitably arise. This in turn will lead to rapid and global pollution of the soil and atmospheric air with dioxins. Particular danger is the fine dust resulting from incineration. Due to the insignificance of size (0.1—1 μm), these particles will soar in the air for a long time. Although formally, the concentration of dioxins in the air can reach safe values in the surface layer at a height of 1.5—2 m from the surface of the Earth, but because of their smallness, such dust particles with dioxins on their surface are extremely dangerous for human health.

We consider the most efficient MSWI alternative is low-temperature waste burning using catalysts, which allows carrying out the catalytic oxidation of all organic waste components. It is also important that during catalytic oxidation, the complete conversion of hydrocarbons into carbon dioxide and water takes place, and the process temperature is in the range from 500 to 700 °C, i.e. below the temperature of nitrogen oxides formation. Catalytic oxidation fundamentally excludes uncontrolled recombination of ions, since they are not formed in the process, and the effluent CO2 and water vapor have a low temperature (120—130 °C). In addition to platinum, less expensive metals and their salts can be used as a catalyst for the oxidation of hydrocarbons. Instead of expensive platinum, one can used less expensive metals and their salts as a catalyst for the oxidation of hydrocarbons. The most valuable advantage of the catalytic oxidation is hydrocarbons complete oxidation, which is fundamentally unattainable under flame combustion. For this reason, the cost of recycling is significantly lower, since it does not require a high factory pipe to dilute hazardous gas components and expensive multi-stage purification of waste gases from supertoxins with dust removal at the submicron level. The main thing is that there are no problems with dioxins, since aromatic hydrocarbons and all high-molecular hydrocarbon compounds are completely oxidized. In addition, the catalytic oxidation process does not require additional energy from an external source. However, the result of complete oxidation is only CO2 and H2O. Accordingly, having accepted restrictions on CO2 emissions, process developers had to abandon the use of catalytic oxidation of the MSW organic component. So environmental- and human-health-friendly zerow-dioxins technology turned out to be a victim of the Kyoto and Montreal Protocol, which have already proved (as many studies have shown, including those constantly published in the journal Space and Time), its senselessness and even harmfulness, given the unique properties of CO2 as a gas contributing to bio-productivity increasing.

We also consider it very revealing that the EU, since 2017, has abandoned high-temperature MSWI in favor of MSW bio-recycling, both enzymatic and microbial (composting and even lanfilling). This means not only the care of the European governments about their citizens, but also the fact that (a) they achieved their goal of capturing the Russian market to backward technologies unload to it, and (b) the MSW landfills retain their conceptual potential. The catastrophic situation with them in Russia is associated only with the destruction of their management system in the 1990s. Today, the solution to the problem of landfills safe management in Russia is to bring their functioning in line with the Sanitary Regulations and Rules 2.01.28-85 and other regulatory-technical documents.

Meanwhile, Russia has a priority in the development of a large-capacity and highly productive high-temperature incineration process that is safe for humans and the environment (patent RU 2648737 dated December 8, 2016). This process uses water vapor heated to 1700 °C and fed from the bottom through tuyeres into the shaft furnace by a counter flow to the layer of MSW descending from above, which at high temperature undergoes conversion to form SNG (synthesis gas) in the lower part of the shaft furnace and pyrogas in the bottom. After cleaning, both types of gases are mixed and fed for combustion in a gas turbine plant in order to generate electricity for their own needs. After turbo-power unit, the exhaust gad is supplied to greenhouses for heating and CO2 useing for plant nutrition. An important advantage of this process is the absence of unrecyclable solid waste, as well as dioxins, which are not formed in principle in the process. The cost of processing MSW tons by this method is at least three times lower compared to the Hitachi-Zosen MSWI plant, only due to the absence of the need for waste sorting and foreign components and consumables. In addition, not only electricity is produced in such MSW utilization, but also construction basalt-based materials, as well as metal. Howevwer, Russian authorities prefers dangerous and expensive Hitachi-Zosen MSWI plant because it allows them to received bonuses, to generate extra revenues and to launder profits.

Our conclusions are as follows:

(i) The purchase and construction of Hitachi Zosen’s MOSCOW NW700 MSWI plants with a capacity of 700 thousand tonnes of solid waste per year in Russia will create serious problems for the following reasons:

(a)      danger to life from dioxins emissions, submicron dust and nitrogen oxides;

(b)      project unprofitability for the budget of the state due to the low solvency of the Russian population;

(c)      high dependence on supplying components and consumables;

(d)      partial plant operating time due to the rapid transboundary dioxin contamination of the adjacent farmlands and inevitable losses due to these farmlands depreciation;

(ii) In the short term, due to the low paying capacity of the population, the purchase and launch of 230 foreign MSWI plans using budget funds will require an annual surcharge of 2 to 5 trillion rubles from the state budget for waste recycling, or the closure of plants due to lack of funds;

(iii) The exclusion of domestic work performers from the work program as developers and manufacturers of equipment for MSW sorting and recycling means a complete loss of the domestic market for this sector of the domestic industry, eliminates the labor market in innovation sphere and creates additional social tension;

(iv) MSW sorting and subsequent composting at landfills with mandatory monitoring of regulations implementation remain until now a real and safe technology for MSW processing provided by Russians’ consumer purchasing power;

(v) The use of new developments in the field of MSW recycling implies the emergence of the Customer with the Terms of Reference and funding for the Contractors;

(vi) In the task of MSW processing, it is urgently necessary to restore the priority of supervisory functions on the part of Sanitary and Epidemiological Supervision with respect to significance and role of other environmental, technical and economic supervisory authorities.

Keywords: municipal solid waste; MSW incineration plant; recycling; high-temperature and low-temperature burning; oxidation; air pollution; dust; slag; landfills; dioxins; furans; CO2.


Cite MLA 7:
Mazurin, I. M., V. V. Ponurovskaya, and S. P. Kolotukhin. "Environmental Deadlock from Waste Incineration and Possible Ways to Overcome It." Electronic Scientific Edition Almanac Space and Time 16.3—4 (2018). DOI: 10.24411/2227-9490-2018-12061. Web. <2227-9490e-aprovr_e-ast16-3_4.2018.61>. (In Russian).


Список литературы / References

Читать статью / Read more